PARSER PARSER COMBINATORS FOR
PROGRAM TRANSFORMATION

Rijnard van Tonder
Y @rvtond

Carnegie

Mellon 9 sourcegraph

University

About Me

Automated

Program {Transformation, Analysis, Repair}

Carnegie

Mellon 9 sourcegraph

University

2

About Me

Automated

Program {Transformation, Analysis, Repair}

Carnegie
Mellon

University

9 sourcegraph

3

About Me

Automated

Program {Transformation, Analysis, Repair}

Code {Search, Intelligence, Review}

Carnegie
Mellon

University

9 sourcegraph

About Me

[<3 developer tools

My favorite color is OCaml

About You
(and this talk)

Code changes.

About You
(and this talk)

Code changes.

All the time.

About You
(and this talk)

change is the only constant

HERACLITVS.

https://commons.wikimedia.org/wiki/File:Heraclitus_in_Thomas_Stanley_History_of Philosophy.jpg

About You
(and this talk)

c00€

change is the only constant

TAN

HERACLITVS.

https://commons.wikimedia.org/wiki/File:Heraclitus_in_Thomas_Stanley_History_of Philosophy.jpg

See the link for demo video

https://drive.google.com/open?id=1ziCX
ghgdNwheDCnLy1ml5us8fGBzZW3CU

https://drive.google.com/open?id=1ziCXghgdNwheDCnLy1ml5us8fGBzW3CU

Have this for any language

Have this for(any]language

What I'd like you to take away from this talk:
A new way to change code

1. A deeper understanding of program syntax, manipulation,
and challenges

2. My solution for manipulating syntax

— Exposure to neat ideas in a functional paradigm

3. Practical tooling & demos

13

[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 1, JANUARY 1992

Language Design For Program Manipulation

Eduardus A. T. Merks, J. Michael Dyck, and Robert D. Cameron, Member, IEEE

Abstract—The design of pmcedural and ohject-oriented pro-
gramming Janguages is considered with respect to how easily
programs written in those languages can be formally manipu-
lated. Current procedural languages such as Pascal, Modula-2,
and Ada generally support such program manipulations, except
for some annoying anomalies and special cases. Three main areas
of language design are identified as being of concern from 2
manipulation viewpoint——namely, the interface between concrete
and abstract syntax, the relationship between the abstract syntax
and static semantics (naming, scoping, and typing), and the ability
to express basic transformations (folding and unfolding). Design
principles are suggested SO that problems identified for current
languages can be avoided in the future.

Index Terms— Language design, program manipulation, lan-
guage environment, syntax, semantics.

1. [NTRODUCTION

PROGRAMS that manipulate other programs are becoming
increasingly important in providing automated assistance
for program development and maintenance. In particular, there
has been long-standing interest in the concept of interactive
program manipulation systems (11, including everything from
program {ransformation systems 2] to language-based edi-
tors [31-{51- Furthermore, smaller scale program manipulation
tools are also of interest, including program instrumenters 6l
{71, program restructurers (8}, program slicers [9], source-
to-source translators 110}, (11}, and even program—speciﬁc
manipulation tools that are designed o process a single
(presumably large) program Of class of programs [121]. {131
The ease of manipulating programs 4s data objects is
strongly influenced by the nature of the target language in

————— . are written. TwO programming lan-

PR T

|14}, € [15], Modula-2 [16}, Ada [17), Eiffel (18], and
Modula-3 [19]. Unfortunately, little attention has been paid
to manipulation issues in the design of such languages; cONse-
quently, they contain a number of avoidable problems in this
regard. In contrast, manipulability has been of considerable
importance in the design of modern functional languages such
as HOPE [20] and Miranda 211, inspired by carly work on
program transformation 22} Nevertheless, many useful pro-
gram manipulations can be carried out in procedural languages.
Furthermore, simple design changes for these languages could
have considerably alleviated their limitations with respect 10
manipulation.

To an extent, appropriate 1anguagc—pr0cessing technology
can make up for deficiencies in target languages. For ex-
ample, language-based editors generated by systems such as
the Synthesizer Generator [23} or pSG [4] can gasily deal
with syntactic ambiguity by reference to incrementally main-
tained semantic attributes. For many other types of program-
manipulation application, however, such technologies are ei-
ther unavailable of inappropriate. In general, our viewpoint is
that there is little penefit in using complex technology 10 solve
manipulation problems when those problems could have been
avoided altogether by careful language design.

The paper will proceed by proposing various principles
of language design that ar¢ aimed at ensuring desirable ma-
nipulation propertics. 1t is important to emphasize thatl these
principles must be weighed carefully against other concerns
that arise during language design, and certainly cannot be
considered a recipe for sSuccess. Language design involves
trade-offs between various desirable properties, and it is our
aim in this paper 1© focus specifically on those that involve

Y L tnortance that @ language designer places
_ e the

14

[EEE TRANSACT[ONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 1, JANUARY 1992

Language Design For Program Manipulation

Eduardus A. T. Merks, J. Michael Dyck, and Robert D. Cameron, Member, IEEE

Abstract— The design of procedural and object-oriented pro- |14}, € [15], Modula-2 [16}, Ada [17], Eiffel [18], and
gramming languages s considered with respect to how easily Modula-3 (191 Unfortunately, little attention has been paid
i e formally “i}’“' o manipulation issues in the design of such languages; conse-
N . o0ain a number of avoidable problems in this

c__opoiderable

r What are sensible choices for
p li)lgram syntax and semantics if the
0. 1 concern is changing code?”

has been long-standt
program manipulation systems (11, including everything from — that there 1 .
program {ransformation systems 2] to language-based edi- manipulation proble
tors [31-{51- Furthermore, smaller scale program manipulation gyoided altogether by careful language design.

tools are also of interest, including program instrumenters 6l The paper will proceed by proposing various principles
[7], program restructurers. (8], program slicers [9], source” of language design that ar¢ aimed at ensuring desirable ma-
to-source translators {10}, (1, ?“d even program—spgciﬁc nipulation propertics. 1t is important to emphasize that these
Is that are designed 10 process @ single principles must be weighed carefully against other concerns
guage design, and certainly cannot be
n involves
d it is our

suages can b

(o

ms when those problems cOUIC

manipulation 100

(presumably large) program Of class of programs (121 [13]. that arise during lan

The ease of manipulating programs 4s data objects 15 considered 2 recipe for cuccess. Language desig

strongly influenced by the nature of the target language i rade-offs between Va Hous desirable properties, an
e - TYY are Tl . i - . . . g)) [; H

 are written. TWO prog{amn‘ung lan- .im in this paper to focus Spemhcally on those that involve

DR T
Y L tnortance that @ language designer places
- s £ the 15

Design

principles are suggested so that problems identified for current

languages can be avoided in the future,

Index Terms— Language design, program manipulation, lan-

guage environment, syntax, semantics.

16

Design

principles are suggested so that problems identified for current

languages can be avoided in the future.

Narrator: they were not avoided

17

Just one example:
concrete syntaxabstract syntax tree

f[

g

if (condition)
return;

\

J

f[

_

if (condition)
return;

\

P

{ """" b aI"Se

2¥8%,..e

. (ir
@dition @
»

Just one example:
concrete syntax abstract syntax tree

7

g

if (condition) {

return;

J

[[

if (condition)
return;

N\

More work for analy51s tools

y/

19

Multiple languages?

—
 —_— w a

https://c-6rtwjumjzx7868x24ymtzlmyhfyfqtix2ek htcatalog.co c-6ymtzlm; yyux78x3ax2fx2fymtzlmyhfyfqtl.knqjx78.btwiuwjx78x78.htrx2f7560x2{66x2fx78h
x78mty-7560-66-57-fy-67-62-70-ur.uslx3fwjx78nejx rwnux3d x26n65h.rfwp -
-

22

23

24

No one wrote a tool yet

25

See the link for demo video

https://drive.google.com/open?id=1xu0
Vt XXvY 9iVT7wmYhSWRfcOcyvitM

https://drive.google.com/open?id=1xu0Vt_XXyY_9iVT7wmYhSWRfc0cyvltM

No one wrote a tool yet

Syntax extensions

PEP 572

if (match := pattern.search(data)) ...

27

No one wrote a tool yet

Syntax extensions

Inline assembly?

if (ZEND CONST COND(offset == 0, 0))

{

~asm__ ("mul" LP_SUFF

"adc $0,%1"

: "'=&a'"(res), "=&d"
"%0"(res),

"rm" (size));

' 23\n\t"

(m_overflow)

28

This is why we can’t have nice things

29

Lightweight Syntax

Transformations & Tooling

Example:
Remove redundant nil checks in Go

f if s I=nil { \

for ,x:=ranges{

-
_ Y,

Example:
Remove redundant nil checks in Go

Omit redundant nil
check around loop
f if s 1=nil \

{

for , x:=ranges{

-
_ Y,

Example:
Remove redundant nil checks in Go

Omit redundant nil
check around loop
f if s 1=nil \ f \

{

for ,x:=ranges{ l for ,x:=ranges{
}

}
_ Y, _ Y,

https://staticcheck.io/docs/gosimple#S1031

Implementation for redundant checks

func (c *Checker) LintNilCheckAroundRange(j *lint.Job) {
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)

if lok {
return true
}
cond, ok := ifstmt.Cond.(*ast.BinaryExpr)
if lok {
return true
}

if cond.Op !=token.NEQ || !IsNil(j, cond.Y) | | len(ifstmt.Body.List) !=1 {
return true

}
loop, ok := ifstmt.Body.List[0].(*ast.RangeStmt)
if lok {
return true
}
ifXIdent, ok := cond.X.(*ast.Ident)
if lok {
return true
}
rangeXldent, ok := loop.X.(*ast.Ident)
if lok {
return true
}

if ifXIdent.Obj != rangeXldent.Obj {
return true
}
switch j.Program.Info.TypeOf(rangeXIdent).(type) {
case *types.Slice, *types.Map:
j.Errorf(node, "unnecessary nil check around range")
}
return true
}
for _, f :=range c.filterGenerated(j.Program.Files) {
ast.Inspect(f, fn)
}

Implementation for redundant checks

func (c *Checker) LintNilCheckAroundRange(j *lint.Job) {
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if lok {

ast.BinaryExpr Know the AST data
structure

}
if cond.Op !=token.NEQ || !IsNil(j, cond.Y) || len(ifstmt.Body.List) != 1 {

return true

}
loop, ok := ifstmt.Body.List[0].(*ast.RangeStmt)
if lok {
return true
}
ifXldent, ok := cond.X.(*ast.Ident)
if lok {
return true
}
rangeXldent, ok := loop.X.(*ast.Ident)
if lok {
return true
}

if ifXIdent.Obj != rangeXldent.Obj {
return true
}
switch j.Program.Info.TypeOf(rangeXIdent).(type) {
case *types.Slice, *types.Map:
j.Errorf(node, "unnecessary nil check around range")
}
return true
}
for _, f :=range c.filterGenerated(j.Program.Files) {
ast.Inspect(f, fn)

}

Implementation for redundant checks

func (c *Checker) LintNilCheckAroundRange(j *lint.Job) {
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if lok {

[ast.BinaryExpr Know the AST data
o structure

}
if cond.Op !=token.NEQ || !IsNil(j, cond.Y) || len(ifstmt.Body.List) != 1 {

return true

}
loop, ok := ifstmt.Body.List[0].(*ast.RangeStmt)
if lok {
return true
}
ifXldent, ok := cond.X.(*ast.Ident)
if lok {
return true
}
rangeXldent, ok := loop.X.(*ast.Ident)
if lok {
return true
}

if ifXIdent.Obj != rangeXldent.Obj {
return true

}

switch j.Program.Info.TypeOf(rangeXldent).(type) { L th o & t AP I

case *types.Slice, *types.Map: e arn e Vl S 1 O r
j.Errorf(node, "unnecessary nil check around range")

}

return true

[ast.Inspect

func (c *Checker) LintNilCheckAroundRange(j *lint.Job) {
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if lok {

[ast.BinaryExpr

rewurmrouce

}
if cond.Op !=token.NEQ || !IsNil(j, cond.Y) || len(ifstmt.Body.List) != 1 {

return true

}
loop, ok := ifstmt.Body.List[0].(*ast.RangeStmt)
if lok {
return true
}
ifXldent, ok := cond.X.(*ast.Ident)
if lok {
return true
}
rangeXldent, ok := loop.X.(*ast.Ident)
if lok {
return true
}

if ifXIdent.Obj != rangeXldent.Obj {
return true

}
switch j.Program.Info.TypeOf(rangeXIdent).(type) {

case *types.Slice, *types.Map:
j.Errorf(node, "unnecessary nil check around range")
}

return true

[ast.Inspect

\

Implementation for redundant checks

Know the AST data

structure

Implement it in
your language

Learn the visitor API

37

func (c *Checker) LintNilCheckAroundRange(j *lint.Job) {
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if lok {

[ast.BinaryExpr

rewurmrouce

}
if cond.Op !=token.NEQ || !IsNil(j, cond.Y) || len(ifstmt.Body.List) != 1 {

return true

}
loop, ok := ifstmt.Body.List[0].(*ast.RangeStmt)
if lok {
return true
}
ifXldent, ok := cond.X.(*ast.Ident)
if lok {
return true
}
rangeXldent, ok := loop.X.(*ast.Ident)
if lok {
return true
}

if ifXIdent.Obj != rangeXldent.Obj {
return true

}
switch j.Program.Info.TypeOf(rangeXIdent).(type) {

case *types.Slice, *types.Map:
j.Errorf(node, "unnecessary nil check around range")

}

return true

[ast.Inspect

\

Implementation for redundant checks

Know the AST data

structure

Implement it in
your language

Learn the visitor API

Now do the same for
Rust, C, Haskell...

38

G }

f if s I=nil {

for ,x:=ranges{

}

\

7

g

for ,x:=ranges{

}

\

39

f if s I=nil { \ f \
for ,x:=ranges{ for ,x:=ranges{
} ‘ }...
N Y _ Y,
Solution: syntactically close templates
/if [var] 1= nil { \ f \
for :[x] : = range :[var] { for :[x] : = range :[var] {
[body] ‘ {body]
} }
& Y, Ny Y,

40

bit.ly/20217Co

See the link for demo video

https://drive.google.com/open?id=19X9
YL.2tZmfOCvK8GxL.LBOEnUKUB88SC3n

https://drive.google.com/open?id=19X9YL2tZmfOCvK8GxL8OEnUkUB88SC3n

Syntax only

7

\}

if :[var] = nil {

\

for :[x] : = range :[var] {
:[body]

7

/

-

for :[x] : = range :[var] {
:[body]
}

\

/

Nothing about this is Go specific

7

\}

if :[var] = nil {

\

for :[x] : = range :[var] {
:[body]

s

/

-

for :[x] : = range :[var] {
:[body]
}

\

/

Nothing about this is Go specific

(syntactically)

7

\}

if :[var] = nil {

\

for :[x] : = range :[var] {
:[body]

7

/

-

for :[x] : = range :[var] {
:[body]
}

\

/

a)

—

-

if (:[x].length 1= 0)

/

art

s

-

\

if (:[x].isNotEmpty)

/

(= :[x] nil)

(?nil :[x])

ala

= Sc
) r

filter(:[x]).size ‘ .count(:[x])

g / -

7

D

Home

PUBLIC

@ Stack Overflow
Tags
Users

Jobs

TEAMS What's this?

) First 10 Free

stackoverflow https://stackoverflow.com/questions/1732348/regex-match-open- -tags-except- xhtml self-contained-tags

34 Answers

B :

4420

v

active oldest votes

next

You can't parse [X][HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML. HTML
is not a regular language and hence cannot be parsed by regular expressions. Regex queries are
not equipped to break down HTML into its meaningful parts. so many times but it is not getting to
me. Even enhanced irregular regular expressions as used by Perl are not up to the task of parsing
HTML. You will never make me crack. HTML is a language of sufficient complexity that it cannot be
parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular expressions.
Every time you attempt to parse HTML with regular expressions, the unholy child weeps the blood
of virgins, and Russian hackers pwn your webapp. Parsing HTML with regex summons tainted souls
into the realm of the living. HTML and regex go together like love, marriage, and ritual infanticide.
The <center> cannot hold it is too late. The force of regex and HTML together in the same
conceptual space will destroy your mind like so much watery putty. If you parse HTML with regex
you are giving in to Them and their blasphemous ways which doom us all to inhuman toil for the
One whose Name cannot be expressed in the Basic Multilingual Plane, he comes. HTML-plus-
regexp will liquify the nerves of the sentient whilst you observe, your psyche withering in the
onslaught of horror. Reg'é'x-based HTML parsers are the cancer that is killing StackOverflow it is too
late it is too late we cannot be saved the trangession of a child ensures regex will consume all living
tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how can
anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of
dread torture and security holes using regex as a tool to process HTML establishes a breach
between this world and the dread realm of corrupt entities (like SGML entities, but more corrupt) a
mere glimpse of the world of regex parsers for HTML will instantly transport a programmer’s
consciousness into a world of ceaseless screaming, he comes;-the-pestilentslithy regex-infection
will devour your HTML parser, application and existence for all time like VisuaL Basic only worse he
comes he comes do not fight he comgs, his unholy radiancé destroying all enlightenment, HTML
tags leakjng from your eyes/1lke liquid pain, the song of regular expresaen—pa#smg—wﬂl extinguish
the voices of mortal man from the sphgre | can see it can you see Jt /t it is beautiful the f inal

snuf fing of the lies of Man ALL IS LOSTi\LL IS LOST the pony he comes he com ' S
tge~|chor permeates all MY FACE MV,EQ(PQ;IJ god no NO NOOOO NO stop the an-g[‘ s ,gre not
real ZALGO ISAT(_)N-y THE PONY H;;1;0M|5§ =

L L
A)Au

m ruby-on-rails

Mid-Level Software Engineer at Root
Insurance (a $3.65 valuation startup)
$100k - $120k

Relocation

m ruby-on-rails

View all 8 job openings!

31 people chatting

RegEx - Regular Expressions
Queen

yEE

HTML / CSS / WebDesign
Félix Gagnon-Grenier

Linked

m Writing regular expression in PHP to wrap

 with <a>
0 Regular expression for remove html links
regular expression to remove links
8 Regexp for html

5 Regular Expression to remove Div tags

B . e

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags

= stackoverflow https://stackoverflow.com/questions/1732348 /regex-match-open- -tags-except- xhtml self-contained-tags

34 Answers active oldest votes m ruby-on-rails
Home
PUBLIC Mid-Level Software Engineer at Root
n 2 next Insurance (a $3.65 valuation startup)
& Stack Overflow | $100k - $120k
You can't parse [X]HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool Relocation
Tags that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here m ruby-on-rails
Users A42() so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML. HTML
Jobs is not a regular language and hence cannot be parsed by regular expressions. Regex queries are
not equipped to break down HTML into its meaningful parts. so many times but it is not getting to View all 8 job openings!
TEAMS What's this? v me. Even enhanced irregular regular expressions as used by Perl are not up to the task of parsing

Have you tried using an XML parser instead?

Tate it is foo lafe we cannot be saved the frangession of a child ensures regex will consume all Tiving —
tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how can
anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of

dread torture and security holes using regex as a tool to process HTML establishes a breach Linked

between this world and the dread realm of ¢orrupt entities (like SGML entities, but more corrupt) a B o

mere glimpse of the world of regex parsers for HTML will instantly transport a programmer’s m Writing regular expression in PHP to wrap
consciousness into a world of ceaseless screaming, he comes;-the-pestilentslithy regex-infection with <a>

will devour your HTML parser, application and existence for all time like VisuakBasic only worse he 0 Regular expression for remove html links

comes he comes do not fight he comgs, his unholy radiancé destroying all enlightenment, HTML

tags leakjng from your eyes/1lke liquid pain, the song of regular expresslen-pamcsmg—wﬂl extinguish “ regular expression to remove links
the voices of mortal man from the sphgre | can see it can you see Jt /t it is beautiful the f inal

snuf fing of the lies of Man ALL IS LOSTi\LL IS LOST the pony he comes he com
tge~|chor permeates all MY FACE Mb’ﬂdﬁ_gb god no NO NOOOO NO stop the an-g[‘ s
real ZALGO |s TONy THE PONY HEJCOME§

s 8 Regexp for html

5
.gre not 5 Regular Expression to remove Div tags

B . e

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags

A Parser for Multiple Languages

A parser for multiple languages

* Shared context-free language properties
— Balanced delimiters
— Delineate trees

A parser for multiple languages

* Shared context-free language properties
— Balanced delimiters
— Delineate trees

* Take a parenthesis language - extend it

S—el|SS| €S)

55

PLDI ‘19

Lightweight Multi-Language Syntax T ransformation
with Parser Parser Combinators

Rijnard van Tonder
School of Computer Science
Carnegie Mellon University

USA
rvt@cs.cmu.edu

Abstract

Automatically transforming programs is hard, yet critical
for automated program refactoring, rewriting, and repair.
Multi-language syntax transformation is especially hard due
to heterogeneous representations in syntax, parse trees, and
abstract syntax trees (ASTs). Our insight is that the prob-
lem can be decomposed such that (1) a common grammar
expresses the central context-free language (CFL) proper-
ties shared by many contemporary languages and (2) open
extension points in the grammar allow customizing syntax
(e.g., for balanced delimiters) and hooks in smaller parsers
to handle language—speciﬁc syntax (€.g- for comments). Our
key contribution operationalizes this decomposition using
a Parser Parser combinator (PPC), a mechanism that gen-
erates parsers for matching syntactic fragments in source
code by parsing declarative user-supplied templates. This
C s sproach to detach from translating input Pro-

L eacentation,

Claire Le Goues
School of Computer Science
Carnegie Mellon University

USA
clegoues@cs.cmu.edu

CCS Concepts * Software and its engineering — Syn-
tax; Translator writing systems and compiler genera-
tors; Parsers; General programming languages; Domain spe-
cific languages.

Keywords syntaX, transformation, parsers, rewriting

ACM Reference Format:

Rijnard van Tonder and Claire Le Goues. 2019. Lightweight Multi-
Language Syntax Transformation with Parser Parser Combinators.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’19), June 22-26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 16 pages- https://doi.
org/10.1 145/3314221 .3314589

1 Intro duction

Automatically transforming programs is hard, yet critical for
automated program refactoring [1, 2, 45), rewriting (8, 44),
and repair [37, 43, 52, 54]. The complexity of automatically
. e ing code has yielded a plethora of approaches

R . onressivity,

56

'=\\ tackoverﬂow Products Customers Use cases

34 Answers active oldest votes
Home
PUBLIC

B :

@ Stack Overflow |

Tags
Users 4420
Jobs

TEAMS What's this? V

) First 10 Free

next

You can't parse [X][HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML. HTML
is not a regular language and hence cannot be parsed by regular expressions. Regex queries are
not equipped to break down HTML into its meaningful parts. so many times but it is not getting to
me. Even enhanced irregular regular expressions as used by Perl are not up to the task of parsing
HTML. You will never make me crack. HTML is a language of sufficient complexity that it cannot be
parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular expressions.
Every time you attempt to parse HTML with regular expressions, the unholy child weeps the blood
of virgins, and Russian hackers pwn your webapp. Parsing HTML with regex summons tainted souls
into the realm of the living. HTML and regex go together like love, marriage, and ritual infanticide.
The <center> cannot hold it is too late. The force of regex and HTML together in the same
conceptual space will destroy your mind like so much watery putty. If you parse HTML with regex
you are giving in to Them and their blasphemous ways which doom us all to inhuman toil for the
One whose Name cannot be expressed in the Basic Multilingual Plane, he comes. HTML-plus-
regexp will liquify the nerves of the sentient whilst you observe, your psyche withering in the
onslaught of horror. Reg'é'x-based HTML parsers are the cancer that is killing StackOverflow it is too
late it is too late we cannot be saved the trangession of a child ensures regex will consume all living
tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how can
anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of
dread torture and security holes using regex as a tool to process HTML establishes a breach
between this world and the dread realm of corrupt entities (like SGML entities, but more corrupt) a
mere glimpse of the world of regex parsers for HTML will instantly transport a programmer’s
consciousness into a world of ceaseless screaming, he comes;-the-pestilentslithy regex-infection
will devour your HTML parser, application and existence for all time like VisuaL Basic only worse he
comes he comes do not fight he comgs, his unholy radiancé destroying all enlightenment, HTML
tags leakjng from your eyes/1lke liquid pain, the song of regular expresaen—pa#smg—wﬂl extinguish
the voices of mortal man from the sphgre | can see it can you see Jt /t it is beautiful the f inal

snuf fing of the lies of Man ALL IS LOSTi\LL IS LOST the pony he comes he com ' S
t9e~|chor permeates all MY FACE Mb’,tﬂ‘\l(fﬁ_;b god no NO NOOOO NO stop the an-,g[_ s ,gre not
real ZALGO |s TONy THE PONY Hgm;oﬂu"s§ =

A)Au

] v i e

m ruby-on-rails

Mid-Level Software Engineer at Root
Insurance (a $3.65 valuation startup)
$100k - $120k

Relocation

m ruby-on-rails

View all 8 job openings!

31 people chatting

RegEx - Regular Expressions
2 hours ago - Queen

¥ v

HTML / CSS / WebDesign
14 hours ago - Félix Gagnon-Grenier

Y

»

Linked

m Writing regular expression in PHP to wrap
 with <a>

0 Regular expression for remove html links

8 Regexp for html

regular expression to remove links

5 Regular Expression to remove Div tags

B . i iemar ot te t<ramr

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags

A simple grammar

grammar ::= term* EOF
term:="("term ') | {"term '}’ | '| term ']’ | term term | token
token ::= ...

A simple grammar

grammar ::= term* EOF
term:="("term ') | {"term '}’ | '| term ']’ | term term | token
token ::= anything_else

59

Example parse tree for Go code

func main() { fmt.Println("hello world") }

Example parse tree for Go code

func main() { fmt.Println("hello world") }

Decompose with respect to delimiters

Example parse tree for Go code

func main() { fmt.Println("hello world") }

func ﬁain () { 5 }

fmt.Println|()

"hello world"

Example parse tree for Go code

func main() { fmt.Println("hello world") }

func .main () { 5 }

fmt.Println|()

"hello world"

grammar ::= term EOF
term:="("term') | '{'term '} | '['term |’ | term term | token
token ::= anything_else

)

if (:[x].length 1=0)

\\ y
)

(= :[x] nil)

\\ y
)

filter(:[x]).size

N\ j

o]

n
0
L
m

)

if (:[x].isNotEmpty)

N Y
)

(?nil :[x])

& Y
)

.count(:[x])

64

How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

s

Parser Combinators

Model parsers as functions that can be
composed using higher-order functions
(combinators) to implement grammar
constructions.

Parser Combinators

A parser for an int...

Parser Combinators

A parser for a string...

Parser Combinators

A parser for an expression...

Parser Combinators are
polymorphic in their production

A parser for an expression...

Parser Combinators are
polymorphic in their production

A parser

How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

s

How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

This defines a parser

s

How to match
declarative templates 4= source code?

Parse an if f
if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

This defines a parser

How to match
declarative templates 4= source code?

Parse an if f
if :[var] = nil { \

for :[x] : = range :[var] {

:[body]
&
‘ Produce a parser for “if”

}
This defines a parser

How to match
declarative templates 4= source code?

[var] 1= nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

This defines a parser

How to match
declarative templates 4= source code?

[var] 1= nil { \

for :[x] : = range :[var] {

:[body]
U
‘ Produce a parser for whitespace

}
This defines a parser

How to match
declarative templates 4= source code?

fif [var] 1= nil { \

for :[x] : = range :[var] {
Parse a hole :[body]

}
U Y

This defines a parser

How to match
declarative templates 4= source code?

fif [var] 1= nil { \
for :[x] : = range :[var] {
Parse a hole :[body]
}
}
\ Produce a parser to
‘ match & store text

This defines a parser

How to match
declarative templates 4= source code?

fif [var] 1= nil { \

Parse balanced {} or :[x] : =range :[var] {
:[body]

}
U Y

This defines a parser

How to match
declarative templates 4= source code?

fif [var] I=nil { \
Parse balanced {} or :[x] : =range :[var] {
:[body]
}
} Produce a parser
\ ‘ for balanced {}

This defines a parser

How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

}
Chain all the parsers...

This defines a parser

s

How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

}
Chain all the parsers...

Parser Parser Combinators

s

Where is the complexity?

// 1) More comments more problems
printf(/* arg 1) */ "1) unbalanced \"parens\" (");

86

// 1) More comments more problems

printﬂ(/* arg 1)

*/"1) unbalanced \"parens\" (");

87

// 1) More comments more problems
printﬂ(/* arg 1) */ "1) unbalanced \"parens\" (");

88

// 1) More comments more problems
printf(/* arg 1) */ "1) unbalanced \"parens\" (");

89

L HAVE
e || 100 pross
99 SO
ProBlet, || RESLAR /

)

https://xkcd.com/1171/

https://xkcd.com/1171/

https://xkcd.com/1171/

See the link for demo video

https://drive.google.com/open?id=1EGh
rBfxw GQgqeH5aWEFLIHSzZYBKCjRyz

https://drive.google.com/open?id=1EGhrBfxw_GQqeH5aWEFLfHSzYBKCjRyz

Small parsers handle syntax
idiosyncracies across languages

Small parsers handle syntax
idiosyncracies across languages

let user_defined_delimiters=["(",")"; "{", "} "[", "]"]
let string_literals = ["\""; """]

let raw_string_literals = ["", ""]

let comment_parser = [Multiline ("/*", "*/") ; Until_newline "/ /"]

GO

Small parsers handle syntax
idiosyncracies across languages

let user_defined_delimiters — ["(" , ")”; "{” , ”}"; "[” , "] "]
let string_literals = ["\""; """]

let raw_string_literals = ["", ""]

let comment_parser = [Multiline ("/*", "*/") ; Until_newline "/ /"]

And embed into a parser skeleton eo

Real world application

Large scale application

* Top 100 GitHub repos for 12 languages

o 1,2 00 repos Go, Dart, Julia, JS, Rust, Scala, Elm,
OCaml, C, Clojure, Erlang, Python

* One to three rewrite rules per language
» 280 million lines of code parsed

* 42 minutes (20 cores)

Large scale application

* Pull requests to 50 unique repositories
—Merged ~40 PRs

https://catalog.comby.dev/
https://github.com/squaresLab/pldi-artifact-2019 /blob/master/PullRequests.md

99

Large scale application

* Pull requests to 50 unique repositories
—Merged ~40 PRs

@ ® watch~ 1,363 % Star 32,159 YFork 5,344

refactor: use shorthand fields

Ixd gl bors merged 1 commitinto rust-lang:master from teresy:shorthand-fields 24 days ago

fn has_type_flags(&self, flags: TypeFlags) —> bool {
- self.visit_with(&mut HasTypeFlagsVisitor { flags: flags })
- self.visit_with(&mut HasTypeFlagsVisitor { flags })

}

100

Demo: end-to-end with nested rewrite

See the link for demo video

https://drive.google.com/open?id=14Up
dLtYA-2YD71AUDawt zhOD SCSZ7C

https://drive.google.com/open?id=14UpdLtYA-2YD71AUDawt_zh0D_SCSZ7C

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 1, JANUARY 1992 19

Summary

Language Design For Program Manipulation

Eduardus A. T. Merks, J. Michael Dyck, and Robert D. Cameron, Member, IEEE

Abstraci—The design of procedural and object-oriented pro-
gramming languages is considered with respect to how easily
programs written in those languages can be formally manipu-
lated. Current procedural languages such as Pascal, Modula-2,
and Ada generally support such program manipulations, except
for some annoying anomalies and special cases. Three main areas
of language design are identified as being of concern from a
manipulation viewpoint—namely, the interface between concrete
and abstract syntax, the relationship between the abstract syntax
and static semantics (naming, scoping, ing),
to express basic transformations (folding and unfolding). Design
principles are suggested so that problems identified for current
languages can be avoided in the future.

Index Terms— Language design, program manipulation, lan-
guage environment, syntax, semantics.

1. INTRODUCTION

ROGRAMS that manipulate other programs are becoming.
increasingly important in providing automated assistance
for program development and maintenance. In particular, there

has been long-standing interest in the concept of interactiv
program manipulation systems [1], including everything from
program transformation systems [2] to language-based edi-
1ors [3}-{5]. Furthermore, smaller scale program manipulation
tools are also of interest, including program instrumenters [6],
[7], program restructurers [8], program slicers [9], sourc
to-source translators [10], [11], and even program-specific
manipulation tools that are designed to process a single

(presumably large) program or class of programs [12]. [13].
The ease of manipulating programs as data objects is
strongly influenced by the nature of the targer language in
which those programs are written. Two programming lan-
guages could be cqually expressive as notations for algorithms
and data structures, but one might be much more conducive to

[14], C [15], Modula-2 [16], Ada [17), Eiffel [18}, and
Modula-3 (19]. Unfortunately, little attention has been paid
to manipulation issues in the design of such languages; conse-
quently, they contain a number of avoidable problems in this
regard. In contrast, manipulability has been of considerable
importance in the design of modern functional languages such
as HOPE [20] and Miranda (21], inspired by carly work on
program transformation [22]. Nevertheless, many useful pro-
gram manipulations can be carried out in procedural languages.
Furthermore, simple design changes for these languages could
have considerably alleviated their limitations with respect 10
manipulation.

To an extent, process
can make up for deficiencies in target languages. For ex-
ample, language-based editors generated by systems such as
the Synthesizer Generator (23] or PSG [4] can easily deal
with syntactic ambiguity by reference to incrementally main-
tained semantic attributes. For many other types of program-
‘manipulation application, however, such technologies are ei-
ther unavailable or inappropriate. In general, our viewpoint is
that there is little benefit in using complex technology 1o solve
manipulation problems when those problems could have been
avoided altogether by careful language design.

The paper will proceed by proposing various principles
of language design that are aimed at ensuring desirable ma-
nipulation properties. It is important to emphasize that these
principles must be weighed carefully against other concerns
that arise during language design, and certainly cannot be
considered a recipe for success. Language design involves
trade-offs between various desirable properties, and it is our
aim in this paper to focus specifically on those that involve
‘manipulation. The importance that a language designer places
roperties will determine the relevance of the

Ia

func main() { fmt.Println("hello world") }

func

term :
token

=1

Q

[

o]
:..
|:I..

~—

fmt.Println(

"hello world"

grammar ::= term EOF
='("term')' | '{'term "} | '[' term ']’ | term term | token

= anything_else

This defines a parser

g https://github.com/com

How to match
declarative templates 4= source code?

if :[var] I=nil {

for :[x] : = range :[var] {

:[body]

Large scale application

* Pull requests to 50 unique repositories

—Merged ~40 PRs

© watch~ 1,363 % Star 32,159

¥ Fork 5,344

refactor: use shorthand fields

ISV bors merged 1 commit into rust-lang:master from teresy:shorthand-fields 24 days ago

272/
/

T

fn has_type_flags(&self, flags: TypeFlags) —> bool {
- self.visit_with(&mut HasTypeFlagsVisitor { flags: flags })
+ self.visit_with(&mut HasTypeFlagsVisitor { flags })

by-tools/comby

@rvtond

