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See the link for demo video

https://drive.google.com/open?id=1ziCX
ghgdNwheDCnLy1ml5us8fGBzZW3CU
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What I'd like you to take away from this talk:
A new way to change code

1. A deeper understanding of program syntax, manipulation,
and challenges

2. My solution for manipulating syntax

— Exposure to neat ideas in a functional paradigm

3. Practical tooling & demos
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Language Design For Program Manipulation

Eduardus A. T. Merks, J. Michael Dyck, and Robert D. Cameron, Member, IEEE

Abstract—The design of pmcedural and ohject-oriented pro-
gramming Janguages is considered with respect to how easily
programs written in those languages can be formally manipu-
lated. Current procedural languages such as Pascal, Modula-2,
and Ada generally support such program manipulations, except
for some annoying anomalies and special cases. Three main areas
of language design are identified as being of concern from 2
manipulation viewpoint——namely, the interface between concrete
and abstract syntax, the relationship between the abstract syntax
and static semantics (naming, scoping, and typing), and the ability
to express basic transformations (folding and unfolding). Design
principles are suggested SO that problems identified for current
languages can be avoided in the future.

Index Terms— Language design, program manipulation, lan-
guage environment, syntax, semantics.

1. [NTRODUCTION

PROGRAMS that manipulate other programs are becoming
increasingly important in providing automated assistance
for program development and maintenance. In particular, there
has been long-standing interest in the concept of interactive
program manipulation systems (11, including everything from
program {ransformation systems 2] to language-based edi-
tors [31-{51- Furthermore, smaller scale program manipulation
tools are also of interest, including program instrumenters 6l
{71, program restructurers (8}, program slicers [9], source-
to-source translators 110}, (11}, and even program—speciﬁc
manipulation tools that are designed o process a single
(presumably large) program Of class of programs [121]. {131
The ease of manipulating programs 4s data objects is
strongly influenced by the nature of the target language in

————— . are written. TwO programming lan-

PR T

|14}, € [15], Modula-2 [16}, Ada [17), Eiffel (18], and
Modula-3 [19]. Unfortunately, little attention has been paid
to manipulation issues in the design of such languages; cONse-
quently, they contain a number of avoidable problems in this
regard. In contrast, manipulability has been of considerable
importance in the design of modern functional languages such
as HOPE [20] and Miranda 211, inspired by carly work on
program transformation 22} Nevertheless, many useful pro-
gram manipulations can be carried out in procedural languages.
Furthermore, simple design changes for these languages could
have considerably alleviated their limitations with respect 10
manipulation.

To an extent, appropriate 1anguagc—pr0cessing technology
can make up for deficiencies in target languages. For ex-
ample, language-based editors generated by systems such as
the Synthesizer Generator [23} or pSG [4] can gasily deal
with syntactic ambiguity by reference to incrementally main-
tained semantic attributes. For many other types of program-
manipulation application, however, such technologies are ei-
ther unavailable of inappropriate. In general, our viewpoint is
that there is little penefit in using complex technology 10 solve
manipulation problems when those problems could have been
avoided altogether by careful language design.

The paper will proceed by proposing various principles
of language design that ar¢ aimed at ensuring desirable ma-
nipulation propertics. 1t is important to emphasize thatl these
principles must be weighed carefully against other concerns
that arise during language design, and certainly cannot be
considered a recipe for sSuccess. Language design involves
trade-offs between various desirable properties, and it is our
aim in this paper 1© focus specifically on those that involve

Y L tnortance that @ language designer places
_ e the
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principles are suggested so that problems identified for current

languages can be avoided in the future,

Index Terms— Language design, program manipulation, lan-

guage environment, syntax, semantics.
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Design

principles are suggested so that problems identified for current

languages can be avoided in the future.

Narrator: they were not avoided
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Just one example:
concrete syntaxabstract syntax tree
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Just one example:
concrete syntax abstract syntax tree
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if (condition) {

return;
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if (condition)
return;
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More work for analy51s tools

y/
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No one wrote a tool yet
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See the link for demo video

https://drive.google.com/open?id=1xu0
Vt XXvY 9iVT7wmYhSWRfcOcyvitM
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No one wrote a tool yet

Syntax extensions

PEP 572

if (match := pattern.search(data)) ...

27



No one wrote a tool yet

Syntax extensions

Inline assembly?

if (ZEND CONST COND(offset == 0, 0))

{

~asm__ ("mul" LP_SUFF

"adc $0,%1"

: "'=&a'"(res), "=&d"
"%0"(res),

"rm" (size));

' 23\n\t"

(m_overflow)

28



This is why we can’t have nice things
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Example:
Remove redundant nil checks in Go

f if s I=nil { \

for ,x:=ranges{

-
\_ Y,
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Example:
Remove redundant nil checks in Go

Omit redundant nil
check around loop
f if s 1=nil \ f \

{

for ,x:=ranges{ l for ,x:=ranges{
}

}
\_ Y, \_ Y,

https://staticcheck.io/docs/gosimple#S1031



Implementation for redundant checks

func (c *Checker) LintNilCheckAroundRange(j *lint.Job) {
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)

if lok {
return true
}
cond, ok := ifstmt.Cond.(*ast.BinaryExpr)
if lok {
return true
}

if cond.Op !=token.NEQ || !IsNil(j, cond.Y) | | len(ifstmt.Body.List) !=1 {
return true

}
loop, ok := ifstmt.Body.List[0].(*ast.RangeStmt)
if lok {
return true
}
ifXIdent, ok := cond.X.(*ast.Ident)
if lok {
return true
}
rangeXldent, ok := loop.X.(*ast.Ident)
if lok {
return true
}

if ifXIdent.Obj != rangeXldent.Obj {
return true
}
switch j.Program.Info.TypeOf(rangeXIdent).(type) {
case *types.Slice, *types.Map:
j.Errorf(node, "unnecessary nil check around range")
}
return true
}
for _, f :=range c.filterGenerated(j.Program.Files) {
ast.Inspect(f, fn)
}
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func (c *Checker) LintNilCheckAroundRange(j *lint.Job) {
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\

Implementation for redundant checks

Know the AST data

structure

Implement it in
your language

Learn the visitor API
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fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if lok {

[ ast.BinaryExpr

rewurmrouce

}
if cond.Op !=token.NEQ || !IsNil(j, cond.Y) || len(ifstmt.Body.List) != 1 {

return true

}
loop, ok := ifstmt.Body.List[0].(*ast.RangeStmt)
if lok {
return true
}
ifXldent, ok := cond.X.(*ast.Ident)
if lok {
return true
}
rangeXldent, ok := loop.X.(*ast.Ident)
if lok {
return true
}

if ifXIdent.Obj != rangeXldent.Obj {
return true

}
switch j.Program.Info.TypeOf(rangeXIdent).(type) {

case *types.Slice, *types.Map:
j.Errorf(node, "unnecessary nil check around range")

}

return true

[ ast.Inspect

\

Implementation for redundant checks

Know the AST data

structure

Implement it in
your language

Learn the visitor API

Now do the same for
Rust, C, Haskell...
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G }

f if s I=nil {

for ,x:=ranges{

}

\

7

g

for ,x:=ranges{

}

\
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f if s I=nil { \ f \
for ,x:=ranges{ for ,x:=ranges{
} ‘ }...
N Y _ Y,
Solution: syntactically close templates
/if [var] 1= nil { \ f \
for :[x] : = range :[var] { for :[x] : = range :[var] {
[body] ‘ {body]
} }
& Y, Ny Y,

40
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See the link for demo video

https://drive.google.com/open?id=19X9
YL.2tZmfOCvK8GxL.LBOEnUKUB88SC3n



https://drive.google.com/open?id=19X9YL2tZmfOCvK8GxL8OEnUkUB88SC3n

Syntax only

7

\}

if :[var] = nil {

\

for :[x] : = range :[var] {
:[body]

7

/

-

for :[x] : = range :[var] {
:[body]
}

\

/




Nothing about this is Go specific
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\}

if :[var] = nil {

\

for :[x] : = range :[var] {
:[body]

s

/

-

for :[x] : = range :[var] {
:[body]
}

\

/




Nothing about this is Go specific

(syntactically)

7

\}

if :[var] = nil {

\

for :[x] : = range :[var] {
:[body]

7

/

-

for :[x] : = range :[var] {
:[body]
}

\

/




a )

—

-

if (:[x].length 1= 0)

/

art

s

-

\

if (:[x].isNotEmpty)

/




(= :[x] nil)

(?nil :[x])




ala

= Sc
) r

filter(:[x]).size ‘ .count(:[x])

g / -
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You can't parse [X][HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML. HTML
is not a regular language and hence cannot be parsed by regular expressions. Regex queries are
not equipped to break down HTML into its meaningful parts. so many times but it is not getting to
me. Even enhanced irregular regular expressions as used by Perl are not up to the task of parsing
HTML. You will never make me crack. HTML is a language of sufficient complexity that it cannot be
parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular expressions.
Every time you attempt to parse HTML with regular expressions, the unholy child weeps the blood
of virgins, and Russian hackers pwn your webapp. Parsing HTML with regex summons tainted souls
into the realm of the living. HTML and regex go together like love, marriage, and ritual infanticide.
The <center> cannot hold it is too late. The force of regex and HTML together in the same
conceptual space will destroy your mind like so much watery putty. If you parse HTML with regex
you are giving in to Them and their blasphemous ways which doom us all to inhuman toil for the
One whose Name cannot be expressed in the Basic Multilingual Plane, he comes. HTML-plus-
regexp will liquify the nerves of the sentient whilst you observe, your psyche withering in the
onslaught of horror. Reg'é'x-based HTML parsers are the cancer that is killing StackOverflow it is too
late it is too late we cannot be saved the trangession of a child ensures regex will consume all living
tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how can
anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of
dread torture and security holes using regex as a tool to process HTML establishes a breach
between this world and the dread realm of corrupt entities (like SGML entities, but more corrupt) a
mere glimpse of the world of regex parsers for HTML will instantly transport a programmer’s
consciousness into a world of ceaseless screaming, he comes;-the-pestilentslithy regex-infection
will devour your HTML parser, application and existence for all time like VisuaL Basic only worse he
comes he comes do not fight he comgs, his unholy radiancé destroying all enlightenment, HTML
tags leakjng from your eyes/1lke liquid pain, the song of regular expresaen—pa#smg—wﬂl extinguish
the voices of mortal man from the sphgre | can see it can you see Jt /t it is beautiful the f inal

snuf fing of the lies of Man ALL IS LOSTi\LL IS LOST the pony he comes he com ' S
tge~|chor permeates all MY FACE MV,EQ(PQ;IJ god no NO NOOOO NO stop the an-g[‘ s ,gre not
real ZALGO ISAT(_)N-y THE PONY H;;1;0M|5§ =
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A Parser for Multiple Languages



A parser for multiple languages

* Shared context-free language properties
— Balanced delimiters
— Delineate trees



A parser for multiple languages

* Shared context-free language properties
— Balanced delimiters
— Delineate trees

* Take a parenthesis language - extend it

S—el|SS| €S)
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Abstract

Automatically transforming programs is hard, yet critical
for automated program refactoring, rewriting, and repair.
Multi-language syntax transformation is especially hard due
to heterogeneous representations in syntax, parse trees, and
abstract syntax trees (ASTs). Our insight is that the prob-
lem can be decomposed such that (1) a common grammar
expresses the central context-free language (CFL) proper-
ties shared by many contemporary languages and (2) open
extension points in the grammar allow customizing syntax
(e.g., for balanced delimiters) and hooks in smaller parsers
to handle language—speciﬁc syntax (€.g- for comments). Our
key contribution operationalizes this decomposition using
a Parser Parser combinator (PPC), a mechanism that gen-
erates parsers for matching syntactic fragments in source
code by parsing declarative user-supplied templates. This
C s sproach to detach from translating input Pro-

L eacentation,
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1 Intro duction

Automatically transforming programs is hard, yet critical for
automated program refactoring [1, 2, 45), rewriting (8, 44),
and repair [37, 43, 52, 54]. The complexity of automatically
. e ing code has yielded a plethora of approaches

R . onressivity,
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You can't parse [X][HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML. HTML
is not a regular language and hence cannot be parsed by regular expressions. Regex queries are
not equipped to break down HTML into its meaningful parts. so many times but it is not getting to
me. Even enhanced irregular regular expressions as used by Perl are not up to the task of parsing
HTML. You will never make me crack. HTML is a language of sufficient complexity that it cannot be
parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular expressions.
Every time you attempt to parse HTML with regular expressions, the unholy child weeps the blood
of virgins, and Russian hackers pwn your webapp. Parsing HTML with regex summons tainted souls
into the realm of the living. HTML and regex go together like love, marriage, and ritual infanticide.
The <center> cannot hold it is too late. The force of regex and HTML together in the same
conceptual space will destroy your mind like so much watery putty. If you parse HTML with regex
you are giving in to Them and their blasphemous ways which doom us all to inhuman toil for the
One whose Name cannot be expressed in the Basic Multilingual Plane, he comes. HTML-plus-
regexp will liquify the nerves of the sentient whilst you observe, your psyche withering in the
onslaught of horror. Reg'é'x-based HTML parsers are the cancer that is killing StackOverflow it is too
late it is too late we cannot be saved the trangession of a child ensures regex will consume all living
tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how can
anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of
dread torture and security holes using regex as a tool to process HTML establishes a breach
between this world and the dread realm of corrupt entities (like SGML entities, but more corrupt) a
mere glimpse of the world of regex parsers for HTML will instantly transport a programmer’s
consciousness into a world of ceaseless screaming, he comes;-the-pestilentslithy regex-infection
will devour your HTML parser, application and existence for all time like VisuaL Basic only worse he
comes he comes do not fight he comgs, his unholy radiancé destroying all enlightenment, HTML
tags leakjng from your eyes/1lke liquid pain, the song of regular expresaen—pa#smg—wﬂl extinguish
the voices of mortal man from the sphgre | can see it can you see Jt /t it is beautiful the f inal

snuf fing of the lies of Man ALL IS LOSTi\LL IS LOST the pony he comes he com ' S
t9e~|chor permeates all MY FACE Mb’,tﬂ‘\l(fﬁ_;b god no NO NOOOO NO stop the an-,g[_ s ,gre not
real ZALGO |s TONy THE PONY Hgm;oﬂu"s§ =
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m ruby-on-rails

Mid-Level Software Engineer at Root
Insurance (a $3.65 valuation startup)
$100k - $120k

Relocation

m ruby-on-rails

View all 8 job openings!

31 people chatting

RegEx - Regular Expressions
2 hours ago - Queen
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HTML / CSS / WebDesign
14 hours ago - Félix Gagnon-Grenier
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m Writing regular expression in PHP to wrap
<img> with <a>

0 Regular expression for remove html links

8  Regexp for html

regular expression to remove links

5 Regular Expression to remove Div tags
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https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags

A simple grammar

grammar ::= term* EOF
term:="("term ') | {"term '}’ | '| term ']’ | term term | token
token ::= ...



A simple grammar

grammar ::= term* EOF
term:="("term ') | {"term '}’ | '| term ']’ | term term | token
token ::= anything_else
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Example parse tree for Go code

func main() { fmt.Println("hello world") }



Example parse tree for Go code

func main() { fmt.Println("hello world") }

Decompose with respect to delimiters



Example parse tree for Go code

func main() { fmt.Println("hello world") }

func ﬁain () { 5 }

fmt.Println|( )

"hello world"




Example parse tree for Go code

func main() { fmt.Println("hello world") }

func .main () { 5 }

fmt.Println|( )

"hello world"

grammar ::= term EOF
term:="("term') | '{'term '} | '['term |’ | term term | token
token ::= anything_else
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How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

s




Parser Combinators

Model parsers as functions that can be
composed using higher-order functions
(combinators) to implement grammar
constructions.



Parser Combinators

A parser for an int...



Parser Combinators

A parser for a string...




Parser Combinators

A parser for an expression...




Parser Combinators are
polymorphic in their production

A parser for an expression...



Parser Combinators are
polymorphic in their production

A parser



How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

s




How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

This defines a parser
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How to match
declarative templates 4= source code?

Parse an if f
if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

This defines a parser




How to match
declarative templates 4= source code?

Parse an if f
if :[var] = nil { \

for :[x] : = range :[var] {

:[body]
&
‘ Produce a parser for “if”

}
This defines a parser




How to match
declarative templates 4= source code?

[var] 1= nil { \

for :[x] : = range :[var] {
:[body]
}

G Y

This defines a parser




How to match
declarative templates 4= source code?

[var] 1= nil { \

for :[x] : = range :[var] {

:[body]
U
‘ Produce a parser for whitespace

}
This defines a parser




How to match
declarative templates 4= source code?

fif [var] 1= nil { \

for :[x] : = range :[var] {
Parse a hole :[body]

}
U Y

This defines a parser




How to match
declarative templates 4= source code?

fif [var] 1= nil { \
for :[x] : = range :[var] {
Parse a hole :[body]
}
}
\ Produce a parser to
‘ match & store text

This defines a parser



How to match
declarative templates 4= source code?

fif [var] 1= nil { \

Parse balanced {} or :[x] : =range :[var] {
:[body]

}
U Y

This defines a parser




How to match
declarative templates 4= source code?

fif [var] I=nil { \
Parse balanced {} or :[x] : =range :[var] {
:[body]
}
} Produce a parser
\ ‘ for balanced {}

This defines a parser



How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

}
Chain all the parsers...

This defines a parser

s




How to match
declarative templates 4= source code?

if :[var] = nil { \

for :[x] : = range :[var] {
:[body]
}

}
Chain all the parsers...

Parser Parser Combinators

s




Where is the complexity?



// 1) More comments more problems
printf(/* arg 1) */ "1) unbalanced \"parens\" (");
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// 1) More comments more problems

printﬂ(/* arg 1)

*/"1) unbalanced \"parens\" (");
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// 1) More comments more problems
printﬂ(/* arg 1) */ "1) unbalanced \"parens\" (");
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// 1) More comments more problems
printf(/* arg 1) */ "1) unbalanced \"parens\" (");
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https://xkcd.com/1171/

https://xkcd.com/1171/


https://xkcd.com/1171/

See the link for demo video

https://drive.google.com/open?id=1EGh
rBfxw GQgqeH5aWEFLIHSzZYBKCjRyz



https://drive.google.com/open?id=1EGhrBfxw_GQqeH5aWEFLfHSzYBKCjRyz

Small parsers handle syntax
idiosyncracies across languages



Small parsers handle syntax
idiosyncracies across languages

let user_defined_delimiters=["(",")"; "{", "} "[", "]"]
let string_literals = ["\""; """]

let raw_string_literals = ["", ""]

let comment_parser = [ Multiline ("/*", "*/") ; Until_newline "/ /"]

GO



Small parsers handle syntax
idiosyncracies across languages

let user_defined_delimiters — [ "(" , ")”; "{” , ”}"; "[” , "] "]
let string_literals = ["\""; """]

let raw_string_literals = ["", ""]

let comment_parser = [ Multiline ("/*", "*/") ; Until_newline "/ /"]

And embed into a parser skeleton eo



Real world application




Large scale application

* Top 100 GitHub repos for 12 languages

o 1,2 00 repos Go, Dart, Julia, JS, Rust, Scala, Elm,
OCaml, C, Clojure, Erlang, Python

* One to three rewrite rules per language
» 280 million lines of code parsed

* 42 minutes (20 cores)



Large scale application

* Pull requests to 50 unique repositories
—Merged ~40 PRs

https://catalog.comby.dev/
https://github.com/squaresLab/pldi-artifact-2019 /blob/master/PullRequests.md
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Large scale application

* Pull requests to 50 unique repositories
—Merged ~40 PRs

@ ® watch~ 1,363 % Star 32,159 YFork 5,344

refactor: use shorthand fields

Ixd gl bors merged 1 commitinto rust-lang:master from teresy:shorthand-fields 24 days ago

fn has_type_flags(&self, flags: TypeFlags) —> bool {
- self.visit_with(&mut HasTypeFlagsVisitor { flags: flags })
- self.visit_with(&mut HasTypeFlagsVisitor { flags })

}
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Demo: end-to-end with nested rewrite




See the link for demo video

https://drive.google.com/open?id=14Up
dLtYA-2YD71AUDawt zhOD SCSZ7C



https://drive.google.com/open?id=14UpdLtYA-2YD71AUDawt_zh0D_SCSZ7C
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Summary

Language Design For Program Manipulation

Eduardus A. T. Merks, J. Michael Dyck, and Robert D. Cameron, Member, IEEE

Abstraci—The design of procedural and object-oriented pro-
gramming languages is considered with respect to how easily
programs written in those languages can be formally manipu-
lated. Current procedural languages such as Pascal, Modula-2,
and Ada generally support such program manipulations, except
for some annoying anomalies and special cases. Three main areas
of language design are identified as being of concern from a
manipulation viewpoint—namely, the interface between concrete
and abstract syntax, the relationship between the abstract syntax
and static semantics (naming, scoping, ing),
to express basic transformations (folding and unfolding). Design
principles are suggested so that problems identified for current
languages can be avoided in the future.

Index Terms— Language design, program manipulation, lan-
guage environment, syntax, semantics.

1. INTRODUCTION

ROGRAMS that manipulate other programs are becoming.
increasingly important in providing automated assistance
for program development and maintenance. In particular, there

has been long-standing interest in the concept of interactiv
program manipulation systems [1], including everything from
program transformation systems [2] to language-based edi-
1ors [3}-{5]. Furthermore, smaller scale program manipulation
tools are also of interest, including program instrumenters [6],
[7], program restructurers [8], program slicers [9], sourc
to-source translators [10], [11], and even program-specific
manipulation tools that are designed to process a single

(presumably large) program or class of programs [12]. [13].
The ease of manipulating programs as data objects is
strongly influenced by the nature of the targer language in
which those programs are written. Two programming lan-
guages could be cqually expressive as notations for algorithms
and data structures, but one might be much more conducive to

[14], C [15], Modula-2 [16], Ada [17), Eiffel [18}, and
Modula-3 (19]. Unfortunately, little attention has been paid
to manipulation issues in the design of such languages; conse-
quently, they contain a number of avoidable problems in this
regard. In contrast, manipulability has been of considerable
importance in the design of modern functional languages such
as HOPE [20] and Miranda (21], inspired by carly work on
program transformation [22]. Nevertheless, many useful pro-
gram manipulations can be carried out in procedural languages.
Furthermore, simple design changes for these languages could
have considerably alleviated their limitations with respect 10
manipulation.

To an extent, process
can make up for deficiencies in target languages. For ex-
ample, language-based editors generated by systems such as
the Synthesizer Generator (23] or PSG [4] can easily deal
with syntactic ambiguity by reference to incrementally main-
tained semantic attributes. For many other types of program-
‘manipulation application, however, such technologies are ei-
ther unavailable or inappropriate. In general, our viewpoint is
that there is little benefit in using complex technology 1o solve
manipulation problems when those problems could have been
avoided altogether by careful language design.

The paper will proceed by proposing various principles
of language design that are aimed at ensuring desirable ma-
nipulation properties. It is important to emphasize that these
principles must be weighed carefully against other concerns
that arise during language design, and certainly cannot be
considered a recipe for success. Language design involves
trade-offs between various desirable properties, and it is our
aim in this paper to focus specifically on those that involve
‘manipulation. The importance that a language designer places
roperties will determine the relevance of the

Ia

func main() { fmt.Println("hello world") }

func

term :
token

=1

Q

[

o]
:..
|:I..

~—

fmt.Println(

"hello world"

grammar ::= term EOF
='("term')' | '{'term "} | '[' term ']’ | term term | token

= anything_else

This defines a parser

g https://github.com/com

How to match
declarative templates 4= source code?

if :[var] I=nil {

for :[x] : = range :[var] {

:[body]

Large scale application

* Pull requests to 50 unique repositories

—Merged ~40 PRs
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¥ Fork 5,344

refactor: use shorthand fields

ISV bors merged 1 commit into rust-lang:master from teresy:shorthand-fields 24 days ago
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fn has_type_flags(&self, flags: TypeFlags) —> bool {
- self.visit_with(&mut HasTypeFlagsVisitor { flags: flags })
+ self.visit_with(&mut HasTypeFlagsVisitor { flags })
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